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an impressive role in the diagnostic management of many oncological diseases, even
though its use in imaging prostate cancer (PC) is limited to selected cases, mostly
advanced stage of PC and selection for prostate specific antigen membrane (PSMA)
radioligand therapy (RLT). In the past years, several PET tracers have been developed
for both staging and restaging PC. The three most employed PET molecules in daily
practice are [11C] or [18F]F-Choline, [18F]F-Fluciclovine (Anti-1- amino-3-[18F]Fluorocy-
clobutane-1-Carboxylic Acid, also known as (Anti-[18F]FACBC), [68Ga]Ga-PSMA and
recently FDA approved the first Fluorinated PSMA-based named [18F]F-DCFPyl. Each
one has its own physiological and peculiarity which are worth exploring. Moreover, an
increasing number of case reports and studies have reported tracers’ variants, pitfalls,
or even non-prostatic diseases (benign and malignant) incidentally detected. In prostate
oncology, PET can be performed with several indications in different stages of disease,
as highlighted in the EAU Guidelines on PC. A correct scan interpretation depends on
the knowledge of both the physiological distribution of the tracers and the uptake of pos-
sible variants and pitfalls. The aim of this critical review is to provide a comprehensive
knowledge of physiological distribution of these three tracers, as well as an updated
overview of variants and pitfalls.
Semin Nucl Med 51:621-632 © 2021 Elsevier Inc. All rights reserved.
Introduction

Prostate cancer (PC) is the most common malignancy in
men.1 Conventional imaging with computed tomogra-

phy (CT), magnetic resonance imaging (MRI) and bone scin-
tigraphy has significant limitations in the evaluation of PC.
Positron emission tomography (PET) for imaging PC has
been spread worldwide due to both technological improve-
ments on PET systems (e.g. PET/MRI systems) and increased
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availability of several PET radiopharmaceuticals. Recent
approval by international regulatory agencies of PET tracers
is not far behind.2,3 More recently, during the revision of the
manuscript, FDA approved [18F]F-DCFPyL as PSMA PET
tracer for PC (after [68Ga]Ga-PSMA-11 approval in European
Union in December 2020)24 While FDG-PET is the pillar of
molecular imaging, its utility for PC is limited to prognostica-
tion of the disease5 and to select clinical scenarios such as in
restaging advanced metastatic castration-resistant disease6 or
poorly differentiated and/or aggressive neuroendocrine his-
tology.7,8 As compared to MRI or even to 11C-Choline,
FDG-PET demonstrated an inferior sensitivity in staging PC
(31% vs 88% vs 73%, respectively).9 Moreover, detection
rate of FDG-PET is still inadequate even in a setting of bio-
chemical recurrent PC. One explanation of these results is
due to the fact that FDG uptake often overlap in some benign
conditions, such as benign hypertrophy, prostatitis, or even
in normal prostate. Still, some lesions may be masked by the
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presence of radiotracer in the urinary tract.6 However, On
the contrary, FDG-PET demonstrated a potential prognostic
role, showing a direct correlation between SUVs and aggres-
sive disease and/or treatment failure.10 The limited-role of
FDG-PET in the evaluation of PC led to developing other
radiotracers for PET imaging of PC with alternative molecular
mechanisms. Of those with clinical interest, only Choline
(labelled with either 18F and 11C), Fluciclovine and PSMA
ligands gained wide-ranging and extensive diffusion. This
critical review aims at providing a comprehensive overview
of physiological uptake and of the most frequently detected
variants and pitfalls when employing PET with Choline, Flu-
ciclovine and PSMA for PC imaging.
Choline
Radiolabeled Choline as a PET tracer, has potential clinical
utility in a number of disease and cancer types even if it is
mostly employed worldwide for PC imaging.11�14 Choline is
a natural molecule normally metabolized to phosphatidylcho-
line by the action of choline kinase. In cancer as well as some
other benign processes, an abnormal modulation of cell
enzymes leads to increased levels of choline precursors and
also breakdown of products of membrane phospholipids.15

Three PET tracers are most commonly used, [18F]F-methyl-
choline (FCH), [18F]F-ethylcholine and [11C]C-choline.
Choline PET tracers are not PC specific nor cancer specific,

as an increased choline metabolism can be detected in a vari-
ety of benign (inflammatory and infectious) and neoplastic
processes.
Physiological Uptake
The uptake and phosphorylation of FCH is similar to that of
[11C]C-Choline and superior to that of [18F]F-ethylcholine
and to other choline analogues16 (Fig. 1 A1 and A2). Fluori-
nated choline tracers have a long half-life (110 minutes) that
allows their distribution in centers without on-site cyclotron
Figure 1 Maximum Intensity Projection (MIP) with [11C]C-C
[68Ga]Ga-PSMA-11 (C), showing physiological distribution.
and simplifying the daily routine. The drawback is a signifi-
cant urinary excretion, limiting the exploration of several
anatomical districts such ureters, bladder, urethra and, most
important, the prostate fossa, where the sensitivity of this
imaging procedure is impaired. On the other hand, [11C]C-
Choline has a shorter half-life (20 minutes), requiring an on-
site cyclotron for its production and application and a fast
patients management; conversely it has rapid blood clearance
and low rate of radioactive urine in the urinary tract.17

Beyond the isotope employed and the subsequent behavior
on the genitourinary system, the most relevant physiological
uptake of labelled choline is in the liver and pancreas. Mod-
erate uptake is seen in the salivary glands and the spleen.
Sites of variable physiological distribution are the pituitary
gland, the choroid plexus, the small bowel, colon, testicles
and bone marrow18 (Fig. 1A).
Prostate Cancer
Although better performing than FDG, CT and bone scan for
PC recurrence, Choline is not specifically recommended by
guidelines,19 due to its limited performance, especially for
low PSA values (nodal recurrence detection rate was 40% for
PSA values < 1ng/mL, 43% for a PSA-value 1-<2 ng/ml,
60% for a PSA-value 2-<3 ng/ml and 70% for a PSA-value
>or= 3 ng/ml).20 However, this tracer is routinely employed
in staging and re-staging PC whenever PSMA is not available.
Benign Conditions
Choline compounds exhibit increased uptake in inflamma-
tory, especially acute, processes, which may potentially affect
tumor specificity. One possible explanation of this phenome-
non, similarly to tumor cells, is the upregulation of choline
kinase in macrophages, which in turn leads to an increased
synthesis of macrophage-membrane phosphatidylcho-
line.21,22 One other possible explanation is that increased
membrane permeability secondary to phlogistic hyperemia
yields passive diffusion of choline.23
holine(A1), 18F-Choline (A2), 18F-Fluciclovine (B) and



Figure 2 [11C]C-CholinePET in a 63 year-old man with biochemical relapse after RP and adjuvant pelvic radiation ther-
apy, with PSA 1.8 ng/mL. Many focal and bilateral uptakes are shown in correspondence of inguinal and external iliac
bilateral lymph nodes. Symmetric and bilateral patterns are compatible with benign condition (inflammatory). Shown
are MIP (A), coronal (B, C) and transaxial (D, E) fused and low-dose CT images.
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The esophagus, mediastinal and inguinal lymph nodes
occasionally show choline accumulation. This is probably
due to the presence of inflammatory processes (Fig. 2). Sar-
coidosis can be detected incidentally by using Choline PET,
showing symmetrical multifocal uptake within lymph nodes
in the mediastinum and within pulmonary nodules.24,25 Dif-
fuse thyroid uptake was observed in case of thyroiditis and
hyperthyroidism.26 Sites of recent trauma and bone fracture
may also have increased choline accumulation.26

Paget’s disease, a chronic bone disorder of unknown origin
with typical increased bone turnover which results in cortical
and trabeculae thickening and bone expansion, has been
described as a tricky finding mimicking PC bony metastases
with mild to moderate Choline activity.27

Choline increased uptake has been described in parathy-
roid adenomas,28 which exhibit choline-kinase overexpres-
sion (similarly to inflammation processes).29�31 Moreover,
increased levels of parathormone seem to influence choline-
kinase overexpression. Interestingly, FCH has demonstrated
good detection accuracy in the diagnosis of parathyroid
hyperplasia or multiple and/or ectopic adenomas, even in
small lesions, thus acquiring importance for non-invasive
preoperatively detection of the lesions in patients with mild
increase of parathormone or even with normal calcemia and
negative or discordant first-line tests (i.e. ultrasounds and
sestamibi scan).32 Adrenal adenomas presenting as hypo-
dense CT nodules related to high fat content may show
increased choline uptake33 (Fig. 3).
Figure 3 [11C]C-Choline MIP (A), axial PET/CT (B) and low-dose
CT (C) of an adrenal adenoma, appearing as a left adrenal mass
(arrows), with same density of normal parenchyma and with severe
tracer uptake.
Malignant Conditions
Although Choline tracers show normal liver uptake, readers
should be aware in evaluating patients with PC, while the
presence of metabolic hepatic lesions might be correlated
either with PC metastases34 or with occult hepatocellular
carcinoma.35 Meningiomas show Choline uptake with a
favorable tumor-to-background ratio due to the relatively
very low uptake in brain parenchyma.36 A study by Vicente
et al. demonstrated a direct correlation among FCH uptake,
tumor grade and patient prognosis.37 A clinical application
through the identification of tumor relapse from radiation
induced necrosis in gliomas is suggested.38 Several malignan-
cies show Choline uptake, e.g. lymphoma, thymoma, esoph-
ageal carcinoma and lymph node metastases.39�43 A careful
assessment of these findings thorough clinical correlation is
needed to avoid misinterpretation with inflammatory disease
or PC metastases. Abnormal and focal uptake can be found
in the colon, resulting in both colic adenomatosis and colon
cancer.26

Readers should be aware of incidental increased Choline
uptake in the bladder, which might unveil malignant
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lesions.44 Taking the advantage of 11C-labeled choline rapid
blood clearance and high tumor-to-background ratio in the
urinary tract, this tracer has been reported to be useful diag-
nostic tool for primary staging of bladder cancer.45

Another possible incidental pitfall are lytic bone lesions
with increased Choline uptake, which are mostly correlated
with multiple myeloma rather than PC metastases.26,46,47

Even if Choline PET is not used in clinical practice for the
management of patients with multiple myeloma, it appears
to be more sensitive than FDG PET/CT for the detection of
bony myelomatous lesions.48,49
FACBC Fluciclovine
FDA-approved and commercially available [18F]F-Fluciclo-
vine (anti-1-amino-3-18F-flu-(anti-1-amino-3-18F-flu-orocy-
clobutane-1-carboxylic acid; also known as FACBC) is a
synthetic amino acid analog PET tracer, whose transmem-
brane transport is mediated by alanine-serine-cysteine trans-
porter (ASCT) and L-type amino acid transporter (LAT),
which are highly expressed in aggressive tumors.50,51 Fluci-
clovine PET is authorized for use in the European Union52

and is mostly employed in re-staging patients with recurrent
PC, while it has a limited role in local staging PC, due to a
significant overlap of uptake between malignant and benign
prostate lesions.53
Physiological Uptake
Amino acids and amino acid transporters are globally repre-
sented in the body, thus explaining how Fluciclovine is phys-
iologically distributed in various organs (Fig. 1B). The most
relevant physiological uptake of labelled Fluciclovine is in
pancreas and liver; less intense uptake is observed in salivary
and pituitary gland. Gastric, bowel and colonic activity is
usually variable mild to moderate. Bone marrow shows a het-
erogeneous pattern uptake, thus resulting in a complex back-
ground for the evaluation of bone metastases. Skeletal
muscles have initial mild activity, increasing and even sur-
passing that of marrow with time. Mild to moderate uptake
is also seen in the spleen and renal parenchyma, sometimes
increased in the proximal collecting system. Adrenals as well
are mildly visualized and sometimes physiological asymmet-
ric uptake is seen. Bladder activity is usually absent or infe-
rior to the blood pool; sometimes, increased uptake is
observed, which may affect the sensitivity in the prostate
fossa in primary PC local staging. a delayed pelvic acquisition
in prone position or after bladder emptying may improve the
reading. Other sites of physiological uptake are the myocar-
dium (similar to muscle), salivary glands, Waldeyer’s ring,
thyroid, breast, scalp, brain and pituitary. Lung uptake is
normally absent or less than blood pool.54�56
Prostate Cancer
Fluciclovine has been approved in May 2016 by the U.S.
Food and Drug Administration (FDA) in May of 2016 for
imaging of suspected prostate cancer recurrence following
primary treatment.57 It has also been authorized in European
Union for PC recurrence.52 In a multicentric study evaluating
nearly 600 patients with PC recurrence, Fluciclovine detec-
tion rate was about 68% (38% in the prostate/bed, 33% in
pelvich lymph node regions, 26% in extra-pelvic regions)
and more than 40% for PSA values < 1ng/mL. Overall PPV
was 62% (72% and 92% for prostate/bed and extraprostatic
disease, respectively).58 In comparison with [11C]C-Choline,
a single-center study demonstrated slightly superiority of
Fluciclovine in recurrent PC (Choline vs Fluciclovine sensi-
tivity was 32% and 37%, specificity was 40% and 67%, PPV
was 90% and 97%, NPV was 3% and 4%, and accuracy was
32% and 38%, respectively.).59 In evaluating primary PC,
Fluciclovine has a limited role due to a significant overlap of
uptake between malignant and benign prostate lesions.60
Benign Conditions
Fluciclovine uptake, being involved in amino acids transport,
which is upregulated by many oncological and non-oncologi-
cal processes, has been largely demonstrated in many infec-
tions, inflammatory and other benign diseases. In fact, ASCT
and L amino-acid transport systems, which are targeted by
Fluciclovine, are overexpressed in activated T or B cells, thus
explaining the uptake in inflammation processes, even lower
compared to that seen with [18F]F-FDG because of less
uptake ratios to activate macrophages and granulocytes.61

Moreover, Fluciclovine seems to show higher uptake in
chronic inflammation rather than in acute processes, as dem-
onstrated in a pre-clinical study62 and also in humans.63

Inflammation findings with high Fluciclovine uptake include
pulmonary hilar, axillary and inguinal lymph nodes (which
are mostly non-specific) (Fig. 4), even though in certain cases
a subtle inflammatory process has been demonstrated, such
as bowel ringworm infection, inflammatory skin lesions,
musculoskeletal inflammation.54 Attention must be paid in
the assessment of prostate disease, while non-malignant
uptake might be observed with benign prostatic hyperplasia
or in chronic (less in acute) inflammation.63 Mild and diffuse
uptake has also been observed after radiation therapy.64

Increased uptake of Fluciclovine in dilated superior sagittal
sinus is a physiologic normal variant reported in literature
and it is probably caused by tracer accumulation in the blood
pool.65 Another physiologic variant of Fluciclovine uptake
has been observed in patients with pituitary adenoma,
meningioma, osteoid osteoma and adrenal gland adenoma.
Conversely, absent uptake was observed in simple renal
cysts, as well as benign hepatic cysts and hemangiomas.54
Malignant Conditions
PC aside, many studies have shown optimal brain tumor
detection with amino acid PET tracers, which seem more
sensitive than [18F]F-FDG PET or even MRI.66 Fluciclovine
in particular, demonstrated an optimal performance in stag-
ing glioma as compared to similar tracers like [11C]C-Methio-
nine, due to its lower background uptake that leads to greater



Figure 4 Primary staging 18F-Fluciclovine-PET in a 65-year-old man
with PC. MIP (A) and coronal images (fused, B; low-dose CT, C)
show bilateral, enlarged inguinal lymph nodes with increased
uptake (arrows). These findings are consistent with chronic inflam-
matory process (courtesy of Dr. Lucia Zanoni, principal investigator
of the project “18F-FACBC PET/CT for staging high risk prostate
cancer” funded by “Programma di ricerca Regione- Universit�a 2013-
Area 1 “Ricerca Innovativa ”, Bando “Alessandro Liberati-Giovani
Ricercatori” (grant number PRUA1GR-2013-00000171).
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lesion contrast and improved detection rate. Moreover, Fluci-
clovine can potentially distinguish between low-grade and
high-grade astrocytomas, even if a small cohort of patients
was considered.67 A recent study by Michaud et al. demon-
strated that Fluciclovine can detect recurrent and progressive
gliomas, even with negative MRI, with better contrast (due to
lower uptake in normal brain) as compared to standard 11C-
Methionine; even if not been currently demonstrated,
authors also hypothesize that Fluciclovine may be superior
to contrast MRI in differentiating tumor recurrence/progres-
sion from pseudo-progression findings, namely post-necrosis
and/or inflammation.68

Fluciclovine has demonstrated, even though with a limited
number of patients, optimistic results as a potential tracer for
breast malignancy, showing significantly higher uptake both
in invasive lobular breast cancer and invasive ductal breast
cancer, as compared to benign lesions. Moreover, high Fluci-
clovine uptake was observed in most aggressive triple-nega-
tive breast cancer.69 Gynecomastia in rare cases can lead to a
focal area of uptake, thus making it indistinguishable from
breast cancer.70

Fluciclovine has been reported to be a potential tracer in
evaluating lung masses. A study by Amzat et al. explored the
usefulness of Fluciclovine in characterizing pulmonary
lesions and thus detecting primary lung cancer in a small
cohort of 10 patients. Fluciclovine was able to differentiate
between malignant and benign, i.e. inflammatory and well
differentiated carcinoid lesions.71 These results are supported
by Takeuchi et al. who demonstrated the presence of LAT1
transporter (targeted by Fluciclovine) is highly expressed in
lung carcinoma and is even associated with pathologic state
and worse prognosis.72
A single case of incidental neuroendocrine tumour show-
ing Fluciclovine uptake in lungs and liver (later confirmed by
octreotide SPECT/CT) in a patient studied for recurrence of
PC has been reported in the literature.73 This phenomenon
can be explained by the overexpression of amino acid trans-
port LAT-1 (targeted from Fluciclovine) in some neuroendo-
crine tumors, such as pheochromocytoma, medullary
thyroid carcinoma and lung carcinoid.74�76

Due to its little uptake in the kidneys (lower than FDG),
Fluciclovine tracer has been studied in evaluating renal
masses. Fluciclovine demonstrated significant higher uptake
in papillary cell tumors, while it was not useful in visualizing
clear cell renal carcinoma.77

Other anecdotal pitfalls of Fluciclovine have been reported
in literature regarding incidental findings of colonic neopla-
sia, squamous cell carcinoma of the scalp, hematological dis-
orders (Fig. 5), desmoid tumors, oropharyngeal squamous
cell carcinoma and recurrent malignant melanoma in patients
imaged for PC.54,78�80
PSMA
PSMA is a type II transmembrane glycoprotein encoded by
the folate hydrolase 1 (FOLH1) gene.81 PSMA-PET demon-
strated the highest diagnostic value in imaging PC, as com-
pared with other PET tracers. PSMA is highly expressed on
the cell surface in PC cells and it correlates with tumor grade,
higher PSA values and prognosis.82

The most used PSMA-tracer is gallium [68Ga]Ga-PSMA-
11 and its analogs [68Ga]Ga-PSMA-HBED-CC, [68Ga]Ga-
HBED-PSMA, and [68Ga]Ga-DKFZ-PSMA-11 which have
the higher tumor-to-background contrast. Other radio-
tracers include [68Ga]Ga-PSMA-I&T,83 [68Ga]Ga-THP-
PSMA,84 18F�DCFPyL,85,86 and [18F]F-PSMA-100788.
Both 68Ga and 18F PSMA are FDA approved,2,4 while a
waiver of the use of [68Ga]Ga-PSMA-11 was granted by
the European Union in 2019.88 Although similar, fluori-
nated PSMA tracers seem highly promising as compared to
68Ga-labeled tracers, due to longer half-life, higher pro-
duction capacity and improved image resolution related to
lower energy positron emissions and possibly improved
detection rate.89

Despite the term PSMA seems to be related only to pros-
tate gland, the expression of this molecule has been studied
in many other normal tissues, as well as in various benign
and malignant pathologies.
Physiological Distribution
The physiological distribution of [68Ga]Ga-PSMA reflects its
expression and excretory pathways in normal tissues
(Fig. 1C). Kidneys, ureters and bladder show very high
uptake because [68Ga]Ga-PSMA is mainly excreted renally.90

This result might generate difficulty in some patients in
assessing abdominal and pelvic nodes beside the urinary tract
or even in the prostate bed. To overcome this issue, adminis-
tration of diuretics, delayed imaging or use of intravenous



Figure 5 [18F]F-Fluciclovine-PET in a 58-year-old man with biochemical relapse after radical prostatectomy and PSA
0.45 ng/mL (MIP, A). Diffuse, faint uptake in bone marrow was observed and in enlarged mediastinal lymph nodes (fused
transaxial image, B). Biopsy was consistent with chronic lymphocytic leukemia. [18F]F-Fluciclovine-PET in a 71 year-old
man with PSA 2.0 ng/mL after radical prostatectomy and incidental finding of mild uptake in the spleen that appears
enlarged (MIP, C), consistent with idiopathic myelofibrosis (courtesy of Dr Cristina Nanni, principal investigator of the
project entitled "ANTI-3-18F-FACBC(anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) in comparison to [11C]C-
CholinePET/CT in the evaluation of patients with prostate cancer radically treated and with rising PSA,"Programma di
ricerca Regione- Universit�a 2010-2012-Area 1 "Ricerca Innovativa ", Bando "Alessandro Liberati"-Giovani Ricercatori").

626 R. Mei et al.
contrast materials can be helpful in discriminating urinary
activity from pathological findings.91

Parotid, submandibular and lacrimal glands normally
show high uptake, probably due to both expression and non-
specific excretion of [68Ga]Ga-PSMA.92 Due to its salivary
excretion, [68Ga]Ga-PSMA mild uptake has been observed in
oropharyngeal, laryngeal and esophageal tract.91 Another
common site of physiological uptake is the first tract of small
bowel (duodenum), in the liver and in the spleen. Lower
uptake is commonly seen in the ganglion Schwann cells of
sympathetic ganglia, namely celiac, stellate, presacral gan-
glia.93 Sometimes these physiological findings might be mis-
interpreted with pathological lymph nodes, which potentially
can be located in proximity to these structures. Bialek and
colleagues compared morphologic and [68Ga]Ga-PSMA-
11 PET/MRI uptake of celiac ganglia (CG) in 120 patients.
Interestingly, although in the vast majority of patients PSMA
uptake in CG was above the cutoff usually considered for PC
lymph nodes metastases (i.e. SUVmax above or equal to 2),
the main features for appropriate detection of CG were mor-
phology and location, which are worthy to be learned. Nor-
mally, non-suspected CGs are thin (i.e. short-axis diameter
less than 10 mm) and linear-shaped. By contrast, typical mis-
taking CGs appear thicker (i.e. short-axis diameter more or
equal to 10mm) nodular, oval and longitudinal (i.e. longitu-
dinal nodular, longitudinal thick or longitudinal with oval
parts) shape. CGs location seemed to be the main feature in
discriminating CG: they usually lie between D12 and L2,
most of right GC are located below and caudal to the right
adrenal gland, whereas left CG usually lies in proximity of
the left adrenal gland.94 Fluorinated PSMA have similar dis-
tribution to Gallium radiolabeled tracers, having the advan-
tage of lack of renal excretion and low urinary activity (if we
consider rh-PSMA and PSMA-1007), thus increasing the
accuracy for lesions near the urinary tract.95

In evaluating PC, a small percentage of PSMA-PET shows
absent or faint uptake, reflecting low PSMA expression. Neu-
roendocrine differentiated PCs do not express PSMA and are
associated with aggressive behavior and worse prognosis96,97

(Fig. 6). Usually, expression of PSMA at metastasis reflects
PSMA avidity in the primary tumor. However, recent histo-
chemistry analysis demonstrated both intratumor and inter-
patient heterogeneity between primary tumor and
metastases.98 False-negative findings of absent PSMA uptake
might be also seen in patients with advanced castration-resis-
tant metastatic disease, where multiple-lines or chemother-
apy inhibit PSMA expression. Interestingly androgen-
deprivation therapy (ADT) may influence PSMA expression,
as reported by many studies, although results are heteroge-
neous or even contradictory. In general, short-term ADT
seems to increase PSMA expression in some patients, while
long-term ADT might exhibit the opposite effect.87

Summarizing, once acknowledged the sites of physiologi-
cal uptake of PSMA and any factor that may influence PSMA
expression (well differentiated neuroendocrine histotype,
ADT, chemotherapy) any focal and intense uptake has to be
considered pathological finding PC-related.

However, PSMA is overexpressed in many other tumors,
showing lower or even non-focal intensity as compared to
PC lesions.
Prostate Cancer
In primary staging PC, PSMA demonstrated higher detection
rate for pelvic lymph nodes and distant metastasis as com-
pared to standard imaging (sensibility 85% [74�96] vs 38%



Figure 6 Staging [68Ga]Ga-PSMA-11 in a 72 year-old, RP and pelvic
lymph node dissection GS 4+3, showing homogeneous prostate
gland uptake (fused and PET transaxial images, A and B), with
exception to a circumscribed area of absent uptake in the right lobe
(arrows). Patient underwent radical prostatectomy and this finding
was related to PC with neuroendocrine differentiation. Despite the
fact that neuroendocrine differentiation is not so common, the
reader should be aware of this potential missing interpretation of a
negative finding in primary staging of PC.
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[24�52] vs) and specificity (98% [95�100] vs 91%
[85�97]), with subsequent clinical management changes.99

Moreover, PSMA showed higher detection rate in restaging
PC patients, in particular with low PSA values (91.7% for
PSA levels � 2 ng/mL, 82.1% for PSA levels 1�1.99 ng/mL,
62.8% for PSA levels 0.5�0.99 ng/mL, 58.7% for PSA levels
0.2�0.49 ng/mL, and 63.6% (7/11) for PSA levels � 0.2 ng/
mL).100,101 Recent EAU Guidelines (2020) recommend
PSMA PET/CT for men with a persistent PSA > 0.2 ng/mL
Figure 7 [68Ga]Ga-PSMA-11 performed in a patient with activ
was observed (MIP, A), especially in terminal ileum, which is ty
ening (coronal and transaxial fused and low-dose CT images, B
and suitable for treatments.19 Patients with multi-metastatic
castration-resistant PC (mCRPC) may also benefit from
radioligand therapy with 177Lu-PSMA.102 A head-to-head
comparison between [68Ga]Ga-PSMA and Fluciclovine in
recurrent PC showed a superior detection rate of the rformer
tracer, being able to disease in 50% more patients and addi-
tional lymph node metastasis in 20% of the patients.103
Benign Conditions
PSMA uptake is frequently observed in both acute and
chronic processes (Fig. 7). Granulomatous diseases and sar-
coidosis in particular, which is a chronic multi-system granu-
lomatous inflammatory disease, have been reported in the
literature to show increased PSMA uptake. However, the pre-
cise molecular mechanism of PSMA uptake in granulomatous
disease is still on debate.93

As mentioned before, PSMA uptake is frequently seen in
ganglia; moreover, some benign tumors of neurogenic origin
may show PSMA activity. These include meningioma, schwan-
nomas and peripheral nerve sheath tumor. Rarely meningioma
may become host for metastasis of a secondary non prostate
tumor (more often lung and breast cancer), as reported by few
cases in the literature.104 As a general statement, any increased
PSMA uptake in meningiomas is worth to be further character-
ized with imaging or even histopathology.105

Any osteoblastic activity may show low and/or moderate
PSMA uptake. These conditions include osteoarthritis, frac-
tures, fibrous dysplasia, degenerative changes. Paget’s disease
may also resemble bone metastasis. In case of uncertainty,
conventional imaging techniques (bone scintigraphy, CT,
MRI) are required to discriminate benign bone lesions from
PC metastase.91 Rauscher et al. compared [18F]F-PSMA-1007
PET and [68Ga]Ga-PSMA-11 PET in two large series of
patients showing respectively 369 and 178 PSMA-ligand-
positive lesions. [18F]F-PSMA-1007 PET revealed five times
e Crohn disease. Diffuse and moderate intestinal uptake
pically involved, in correspondence of bowel wall thick-
, C, D, F; PET transaxial image, E).



Figure 8 [68Ga]Ga-PSMA-11 (MIP, A; fused and low-CT transaxial
images, B and C) showing intense and focal uptake in the superior
splenic pole, in correspondence of a centimetric hypodense area
(arrows). This was a case of splenic angioma confirmed with ultra-
sonography.

Figure 9 [68Ga]Ga-PSMA-11 in a 72-year-old man with von Reck-
linghausen disease (i.e. type 1 neurofibromatosis) and biochemical
relapse after radical prostatectomy and radiation therapy. Multiple,
avid subcutaneous fibromas are observed in the scalp (MIP, fused
and low-dose CT images, A,B,C). Otherwise, PET was negative for
any PC metastases.
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more benign lesions than did [68Ga]Ga-PSMA-11 PET, espe-
cially in the bones.106

Hemangiomas usually show increased PSMA uptake, due
to the high number of endothelial cells and vascular density;
these incidental findings were observed in the liver, verte-
brae, spleen (Fig. 8) and abdominal skin.107�109

A conspicuous number of other cases of non-prostatic
increased PSMA uptake in soft tissues has been reported.
These findings included desmoid tumor, fasciitis nodularis,
intramuscular myxoma, acrochordon, dermatofibroma and
pseudoangiomatous stromal hyperplasia.110�114 Although
rare, patients with von Recklinghausen disease might exhibit
increased PSMA uptake in cutaneous fibromas115 (Fig. 9).
Figure 10 [68Ga]Ga-PSMA-11 (MIP, A) with incidental findin
(arrows in coronal and transaxial fused and low-dose CT imag
cinoma by histopathology.
Malignant Conditions
Many other malignant tumors exhibit increased PSMA
uptake, more possibly related to tumor neo-angiogenesis
(Fig. 10 and 11). Renal cell carcinoma (RCC), which is char-
acterized by high PSMA expression on the endothelial cell
membrane, is one of the first incidental findings reported in
the literature,116 so that recent studies propose this tracer for
the diagnostic work-up of RCC especially those with clear
g of mild, patchy uptake in a large right adrenal mass
es, B, C, D, E) subsequently confirmed to be adrenal car-



Figure 11 [68Ga]Ga-PSMA-11 showing mild and diffuse uptake in
mediastinum (arrow in MIP, A). An incidental avid mass was
detected in the posterior mediastinum, adjacent to esophagus
(arrows in fused and low-dose CT images, B and C). Biopsy was
compatible with non-Hodgkin B lymphoma.

Figure 12 [68Ga]Ga-PSMA-11 MIP (A), fused and low-dose images
(B and C) showing intensely avid PSMA uptake in a case of colon
adenocarcinoma (mass in internal bowel wall, arrows) and with
mediastinal metastasis from PC.
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cell histotype, with promising results.117 Hepatocellular car-
cinoma (HCC), which is the third most frequent cause of
cancer-related death worldwide, has demonstrated signifi-
cant PSMA expression at immunohistochemistry on its neo-
vasculature, thus making it feasible for PSMA-PET
evaluation.100 In a recent study by Hirmas et al. forty patients
with imaging consistent with HCC were evaluated with addi-
tional PSMA-PET. [68Ga]Ga-PSMA-11 PET demonstrated
higher accuracy than CT in the detection of HCC metastases
and was associated with management change in about half of
the patients.118

Several benign and malignant pancreatic lesions show
PSMA uptake, spacing from papillary mucinous neoplasm,119

to serous cystadenoma120 and neuroendocrine tumor.121

Many other incidental findings of malignancies with high
PSMA expression are reported in the literature, leading to a
growing number of studies aimed to explore the potential
role of PSMA-PET in these tumors. A recent review by
Sheikhbahaei and colleagues reported several studies of
PSMA in adenocarcinoma of urinary bladder, glioblastoma,
breast carcinoma, gastric and colorectal cancer (Fig. 12),
malignant epithelioid hemangioendothelioma of the liver,
adenoid cystic carcinoma of the salivary gland, thymic carci-
noma,122 multiple myeloma, papillary thyroid carcinomas
and sarcomatous transformation of fibrous dysplasia.110

Despite the promising results, larger, prospective trials are
needed to validate the potential role of PSMA-PET in the
evaluation of non-prostatic malignancies.
Conclusion
The widespread use of the presented tracers for PC requires
an awareness about potential pitfalls reported in the literature
and to acquire familiarity with normal distribution and
possible variants. Although mainly employed in PC, Choline
Fluciclovine and PSMA PET tracers are able to detect many
other pathologies. Deep knowledge of tracers’ behavior is
mandatory as well as the full patient history and those char-
acteristics suggesting a higher risk for metastatic disease on
PET images, e.g. PSA kinetics and pathological staging, in
order to provide the best diagnostic information for the
patient. The conspicuous amount of incidental reporting and
the growing number of studies aimed to explore the potential
role of these radiotracers in different pathologies, suggest
their potential role in the diagnosis of other malignancies.
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