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tural imaging. There are several currently available radiotracers, but 18F-FDG is the most
commonly utilized due to its widespread availability. 18F-FDG PET/CT is a cornerstone of
head and neck squamous cell carcinoma imaging. 68Ga-DOTA-TOC is another widely used
radiotracer. It allows for whole-body imaging of cellular somatostatin receptors, commonly
expressed by neuroendocrine tumors and is the standard of reference for the characteriza-
tion and staging of neuroendocrine tumors.
The normal biodistribution of these PET radiotracers as well as the technical aspects of image
acquisition and inadequate patient preparation affect the quality of PET/CT imaging. In addi-
tion, normal variants, artifacts and incidental findings may impede accurate image interpreta-
tion and can potentially lead to misdiagnosis. In order to correctly interpret PET/CT imaging,
it is necessary to have a comprehensive knowledge of the normal anatomy of the head and
neck and to be cognizant of potential imaging pitfalls. The interpreter must be familiar with
benign conditions which may accumulate radiotracer potentially mimicking neoplastic pro-
cesses and also be aware of malignancies which can demonstrate low radiotracer uptake.
Appropriate use of structural imaging with either CT, MR or ultrasound can serve a compli-
mentary role in several head and neck pathologies including local tumor staging, detection
of bone marrow involvement or perineural spread, and classification of thyroid nodules. It is
important to be aware of the role of these complementary modalities to maximize diagnostic
accuracy and patient outcomes.
The purpose of this article is to outline the basic principles of PET/CT imaging, with a focus
on 18F-FDG PET/CT and 68Ga-DOTA PET/CT. Basic physiology, variant imaging appearan-
ces and potential pitfalls of image interpretation are presented within the context of com-
mon use cases of PET technology in patients with head and neck cancers and other
pathologies, benign and malignant.
Semin Nucl Med 51:419-440 © 2021 Published by Elsevier Inc.
Introduction

Combined PET/CT imaging represents a fusion of both
anatomical and metabolic data. It offers several
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advantages over PET imaging alone including a significant
reduction in image acquisition time, anatomical correlation,
and more accurate localization of focal areas of increased
radiotracer uptake within detected lesions.

18F is the most frequently used radiotracer for PET/CT
imaging as it has a long half-life of 110-minute and is avail-
able to many nuclear medicine centers worldwide. 18F-
labelled 2-deoxy-2-D-glucose (Fluorodeoxyglucose or FDG)
is the most applied PET tracer for oncology imaging, in
which the hydroxyl group of glucose is replaced by a posi-
tron-emitting fluorine isotope.

68Ga-DOTAPET/CT is an imaging technique for the detec-
tion and characterization of neuroendocrine tumors (NETs).
68Ga can be used to image somatostatin receptor expression
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and is vastly superior to 111In labeled octreotide studies.1
68Ga is produced in an onsite generator as it has a short half-
life of 68 minutes. It is then chelated to either octreotide
(68Ga-DOTA-TOC or 68Ga-DOTA-NOC) or octreotate
(68Ga-DOTA-TATE) using the organic compound DOTA
(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).2

This is a much more complex process than preparation of
18F-FDG and so this radiotracer is not as widely available.
Basic Physiology
Increased glucose uptake in tumor cells is a result of increased
anaerobic glycolysis, known as the Warburg effect. Cancer
cells express an increased number of specific glucose trans-
porter proteins compared to normal tissue cells. Following
administration, FDG, like glucose is taken up from the plasma
by tumor cells via these facilitative glucose transporter proteins
(GLUTs). FDG is then phosphorylated by the enzyme hexoki-
nase and converted into FDG-6-phosphate. Expression of
GLUTs and hexokinase, as well as the affinity of hexokinase
for phosphorylation of glucose or FDG is generally higher in
cancer cells than in normal cells. Glucose-6-phosphate travels
farther down the glycolytic or oxidative metabolic pathway in
contrast to FDG-6-phosphate, which cannot be metabolized.
In normal cells, glucose-6-phosphate or FDG-6-phosphate
can be dephosphorylated and exit the cells. In cancer cells,
however, expression of glucose-6-phosphatase is usually sig-
nificantly decreased, and glucose-6-phosphate or FDG-6-
phosphate is only minimally dephosphorylated and remains
within the cell. FDG-6-phosphate cannot be metabolized and
therefore does not follow the glucose metabolism route any
further � it is metabolically trapped inside of the tumor cells.
This process of “metabolic trapping” of FDG within the cell
constitutes the basis for 18F-FDG PET/CT imaging. Diagnosis
of malignant tumors is therefore a major indication for 18F-
FDG PET�CT imaging.3-7

Neuroendocrine cells control various physiological pro-
cesses by secreting hormones. These hormones bind inhibi-
tory or stimulatory cell surface receptors. The most
ubiquitous inhibitory cell surface receptor is the somatostatin
receptor (SSTR), of which there are 5 subtypes. The peptide
somatostatin and various synthetic somatostatin analogues,
including octreotide can be used to bind SSTR.8

This allows whole body imaging of cellular SSTR expres-
sion and is the standard of reference for the characterization
of NETs. Little difference has been demonstrated in clinical
utility between each analogue (68Ga-DOTA-TOC, 68Ga-
DOTA-NOC or 68Ga-DOTA-TATE) and the decision is most
often driven by local availability.9
Common Uses of PET CT in Head
and Neck Cancer Evaluation
18F-FDG PET/CT is recommended for the initial staging of
advanced head and neck squamous cell carcinoma (HNSCC)
� stage III and IV disease, to detect distant metastases.10 It
can detect metastases in approximately 15% of patients with
advanced disease and alter management in up to 31% of
cases.11 Despite the high accuracy of 18F-FDG PET/CT for
the detection of metastases in patients with HNSCC (sensitiv-
ity of 88% and specificity of 94%), it remains underutilized
for this purpose.12,13

18F-FDG PET/CT can also be used to identify the primary
tumor site in patients with malignant cervical adenopathy of
unknown primary. In this context 18F-FDG PET/CT can
detect a primary lesion in up to a third of cases.14

Other important uses of PET/CT include radiotherapy
planning, post treatment evaluation and assessment of dis-
ease recurrence. The PET-NECK trial demonstrated non-infe-
rior outcomes for patients who underwent 18F-FDG PET/CT
12 weeks post chemo-radiotherapy compared to those that
underwent neck dissection for N2/3 disease.15 A negative
12-week 18F-FDG PET/CT offers good prognostic reassur-
ance, and has been incorporated in the National Comprehen-
sive Cancer Network (NCCN) guidelines.16

Given the extensive use of 18F-FDG PET/CT in head and
neck cancer, it is of paramount importance that the reader of
PET/CT is aware of the many variants, pitfalls and artifacts
that may hamper interpretation.
Patient Preparation
Adequate patient preparation is necessary to optimize the
utility of 18F-FDG PET/CT or 68Ga-DOTAPET/CT imaging.
For 18F-FDG PET/CT patients are advised to fast approxi-
mately 4-6 hours before image acquisition and to abstain
from beverages with sugar. This ensures FDG uptake by
tumor cells, which may be reduced if glucose levels are
increased due to glucose-FDG competition. Additionally, the
dominant myocardial metabolism of fatty acids in the fasting
state reduces FDG uptake in myocardium. Fasting is not
required prior to 68Ga-DOTA PET/CT. It has been recom-
mended by some authors to discontinue octreotide therapy
to avoid SSTR blockade but many centers do not require
this. An option to minimize their effect is to perform 68Ga-
DOTA PET/CT the day before administration of a long acting
octreotide agent.17

Knowledge of the patient’s medical history is necessary
with particular attention to the following; a full treatment his-
tory including timing of chemotherapy, external radiation
therapy, administration of bone marrow stimulating factors,
recent octreotide therapy, recent surgery or biopsy, prior
diagnostic imaging and relevant lab analysis.
Image Acquisition
The European Association of Nuclear Medicine (EANM) has
published guidelines for optimal 18F-FDG PET/CT and 68Ga-
DOTAPET/CT imaging.17,18 The patient’s blood glucose level
is checked prior to 18F-FDG PET/CT with recommended val-
ues of 120-150 mg/dL. The EANM recommend a dose
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calculation based on the patient’s weight and the degree of
table overlap at each table position during image acquisition
(greater or less than 30%). This ensures consistency in SUV-
max values between different institutes or even within the
same patient as their weight may change over the course of
treatment. It allows for a standardized approach to diagnosis,
staging and treatment response.18

If diabetic patients demonstrate glucose levels of greater
than 200-250 mg/dL, they should be rescheduled, rather
than intravenously treated by insulin which can increase
FDG uptake in fat and muscles and compromise image inter-
pretation. PET/CT imaging is performed about 60-90
minutes after intravenous 18F-FDG radiotracer administra-
tion and after 45-90 minutes in the case of 68Ga-DOTA.
Following application of the 18F-FDG radiotracer, patients

are placed in a quiet room with instructions to rest, stay calm
without excessive movement to minimize skeletal muscle
uptake. To avoid possible brown fat activation, the injection
room should be kept at warm temperature. Patients are also
advised to minimize muscle activity 24 hours before image
acquisition to avoid increased muscular FDG uptake.
FDG is mostly excreted by the kidneys, and unlike glucose

is not reabsorbed. Good hydration is recommended before
FDG administration to improve target-to-background ratios.
Patients are advised to urinate prior to 18F-FDG PET/CT or
68Ga-DOTA PET/CT acquisition and frequently afterwards.
This limits artifact from renal excretion and decreases blad-
der radiation exposure.
Standard imaging extends from the skull base to the upper

thighs. For head and neck studies the arms are placed down
by the patient’s side. This differs from other indications for
which the patient’s arms are usually raised. This reduces arti-
fact on CT and attenuation correction artifact on PET imag-
ing in the regions of interest. Patient motion during image
acquisition can lead to misregistration artifact and should be
recorded by the technologist (Fig. 1).
Attenuation Correction Artifacts
There are several artifacts that are unique to PET/CT, most of
which result from the CT attenuation correction protocol.
They most commonly relate to over or under correction.
SUV values can be increased or decreased depending on
whether the corresponding CT attenuation has been
increased or decreased, respectively.
Dental Prosthetics, Metallic Implants and
Ports
Dental prosthetics, metallic implants or chemotherapy ports rep-
resent common artifacts in PET/CT imaging of the head and
neck. In the presence of these high density materials, standard-
ized uptake value (SUV) measurement is compromised.
High photon absorption from high density material pro-

duces streak artifacts on CT images. This disturbs the normal
attenuation distribution and correspondingly increases the PET
attenuation coefficient. This leads to over-attenuation of PET
images and results in falsely increased FDG uptake in the
region.19 Algorithms are available for the correction of CT dental
artifacts by means of increasing or decreasing the Hounsfield
units in the regions with under or overestimated values.20,21

Adequate PET/CT interpretation can be difficult in the
presence of metal induced artifacts. The appearance of
increased radiotracer uptake can mimic a focal mass within
the oral cavity or if identified surrounding a metallic prosthe-
sis or chemotherapy port can be mistaken for infection.22

Retained radiotracer within the port or central venous cathe-
ter can also mimic artifact and injection via a peripheral intra-
venous line is therefore preferred.23

Alternatively, in patients with head and neck tumors
involving the tonsils or oral cavity, attenuation overcorrec-
tion can mean that even a large tumor may be difficult to
appreciate.19 Metal-induced artifacts are only demonstrated
on attenuation corrected PET images. In order to avoid this
interpretation pitfall, it is necessary to review the non-attenu-
ation corrected PET images24-27 (Fig. 1).
Intravenous Contrast Medium
Some institutions advocate a contrast enhanced CT for attenua-
tion correction. This has the advantage of allowing a single
examination to stage a tumor and plan treatment.28 Using post
contrast CT imaging for attenuation correction can lead to over-
correction of PET data due to dense contrast material within vas-
cular structures and can lead to clinically significant
abnormalities being missed if they are located in the vicinity of
contrast artifact.29 Less commonly, it can lead to apparent focal
FDG uptake mimicking a mass or abnormal lymph node.30
Calcified Lymph Nodes
Calcification of the mediastinal lymph nodes is relatively
common. The markedly increased density of these nodes can
lead to apparent increased FDG uptake potentially mimick-
ing mediastinal lymphadenopathy. This can alter patient
management, particularly in the setting of lung cancer as it
can lead to nonsurgical management if the non contrast CT
is not adequately interrogated. In the setting of head and
neck SCC, this artifact could lead to an incorrect nodal stag-
ing. This pitfall is relatively easy to avoid by assessing the
non-attenuation corrected PET and non contrast CT
images.23
Physiological Variants
Muscular Uptake
FDG uptake in the muscles of the head and neck is a com-
mon physiological finding that may hamper adequate PET/
CT interpretation. Several muscles within or adjacent to the
oral cavity, oropharynx and hypopharynx demonstrate phys-
iologic FDG uptake. These include the muscles of the floor
of the mouth, the pterygoid muscles, the tongue and



Figure 1 Patient 1 (A and B): (A) Axial 18F-FDG PET/CT demonstrates misregistration artifact due to patient move-
ment (white arrow). The FDG-avid lesions projected over the right sided pterygoid plates and left level II on 18F-FDG
PET/CT (black asterisks) are actually located within the right masticator space and the posterior triangle of the left side
of the neck on CT (B) (white asterisks). Patient 2: (C) 18F-FDG PET/CT with misregistration artifact due to movement
of the patient’s head (white arrow). Patient 3 (D-G): (D) 18F-FDG PET/CT with apparent increased radiotracer uptake
within the floor of the mouth. (E) Axial non contrast CT demonstrates beam hardening artifact from dental prosthetics.
(F) 18F-FDG PET with attenuation correction demonstrates apparent increased uptake corresponding with the area of
beam hardening artifact on CT (asterisk) but this is not visible on the non-attenuation corrected image (G) consistent
with attenuation correction artifact (asterisk).
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cricopharyngeus.29,31 Asymmetric uptake may mimic a
malignant tumor or lymph node but the CT images can be
assessed for a corresponding mass.
Talking during the FDG uptake phase can result in

increased uptake within the muscles of phonation and vocal
cords31 (Fig. 2). Increased metabolic activity can also be
detected in the lingual region and masseter muscles.29,31-33

Excessive eye movements prior to image acquisition leads to
increased uptake within the extraocular muscles34 (Fig. 2).
Coughing results in increased uptake within the pharyngeal
constrictor muscles and vocal cords (Fig. 2). A unilateral
vocal cord palsy can lead to altered physiology within the
contralateral vocal cord and resultant increased FDG
uptake.35 Each of these appearances can mimic malignancy
but this can usually be easily clarified on the non contrast
CT.
Diffuse FDG uptake within the skeletal muscles is caused by

strenuous patient exercise prior to image acquisition32 (Fig. 2).
Increased physiological uptake in the cervical and paraspinal
muscles occurs because of anxiety related muscle contraction
(Fig. 2). This can mimic metastatic lymphadenopathy or obscure
underlying malignant adenopathy resulting in either a false posi-
tive or false negative result.29,32,33,36,37 Physiological activity in
the muscles is usually presented as linear FDG uptake with fur-
ther characterization on CT images helpful in differentiation
from abnormal lymph nodes.29,36 In order to reduce contrac-
tion-induced muscle uptake in anxious patients some authors
suggest administration of benzodiazepine in selected patients.38

As outlined above, insulin administration prior to PET/CT acqui-
sition induces diffuse FDG uptake in skeletal muscles and conse-
quently compromises interpretation of the study.39
Figure 2 Patient 4 (A-C): (A) Axial 18F-FDG PET, (B) axial 18F-
FDG PET/CT and (C) axial CT demonstrate increased uptake
within the musculature of the tongue without a corresponding mass
(asterisks). This is due to talking during the radiotracer uptake
phase. Patient 5 (D-F): (D) Axial 18F-FDG PET, (E) axial 18F-FDG
PET/CT and (F) axial CT demonstrate increased uptake within the
vocal cords without a corresponding mass (arrows) in keeping with
physiological uptake due to phonation. Patient 6: (G) Axial 18F-
FDG PET/CT demonstrates increased uptake within the trapezius
muscles bilaterally in an anxious patient (asterisks). Patient 7: (H)
Axial 18F-FDG PET/CT demonstrates normal physiological myocar-
dial FDG uptake (arrow). Patient 8: (I) Axial 18F-FDG PET/CT
demonstrates increased FDG uptake within the left infraspinatus
Lymphoid Tissue of Waldeyer’s Ring
Symmetric FDG accumulation within lymphoid tissue is often
seen in younger patients and is a normal variant. It can also be
due to benign conditions such as infection, inflammation, or
granulomatous processes (Fig. 3). These benign conditions may
also present as focal FDG uptake, leading to false positive inter-
pretation of PET/CT29,33,40-43 (Fig. 3). While there is variation in
FDG uptake in normal tonsilar tissue, it is usually relatively sym-
metric with only small differences in metabolic activity between
the right and left sides. Because of this strong side to side correla-
tion, an SUVmax ratio is probably more robust than differences
in absolute SUVmax values.44 One single center study of 25
patients suggests an asymmetry ratio of �1.6 as being highly
suspicious for malignancy, with a reported sensitivity of 62%
and specificity of 100%.45
muscle (white asterisk) after a patient was required to drive between
hospitals during the uptake phase due to a technical malfunction
with the only available on-site PET/CT scanner. Patients 9 and 10:
(J and K) Maximum intensity projection (MIP) and axial 18F-FDG
PET/CT images demonstrate increased physiological uptake within
the sternocleidomastoid muscles (white arrows). The MIP images
demonstrate linear uptake corresponding with the two heads of
sternocleidomastoid. Patient 11: (L) Axial 18F-FDG PET/CT dem-
onstrates normal physiological uptake within the extraocular
muscles (black asterisks).
Brown Fat Uptake
There are two different types of adipose tissue, white adipose
tissue (WAT) and brown adipose tissue (BAT). WAT serves
as a thermal insulator and a provider of energy storage but it
also has a complex metabolic role. In contrast, the main role
of BAT is in thermoregulation � it produces heat in response
to cold exposure and after food intake � thermogenesis.46-49



Figure 3 Patient 12: (A-C): (A) Axial 18F-FDG PET, (B) axial 18F-FDG PET/CT and (C) axial non contrast CT demon-
strate increased radiotracer uptake within the palatine tonsils (asterisks) (SUVmax 9.5 on the right and SUVmax 10.2
on the left) secondary to biopsy proven chronic tonsillitis. Patient 13: (D-F): (D) Axial 18F-FDG PET and (E) axial
18F-FDG PET/CT demonstrate asymmetrically increased FDG uptake within the left palatine tonsil (arrows) (SUVmax
4.7). Biopsy confirmed non-Hodgkin’s lymphoma within this tonsil. Axial non contrast CT demonstrates that the
abnormal tonsil has a nodular appearance (arrow) compared to the contralateral side. Patient 14: (G) Axial 18F-FDG
PET/CT in another patient demonstrates avid FDG uptake within the left palatine tonsil (asterisk) post right-sided ton-
sillectomy. Both palatine tonsils had been markedly FDG-avid prior to tonsillectomy raising the possibility of malig-
nancy. Postsurgical pathology demonstrated actinomycosis infection. Patient 15: (H and I): (H) Axial non contrast
CT and (I) 18F-FDG PET/CT demonstrate normal physiological FDG uptake within brown fat (asterisks). Patient 16:
(J and K): (J) Axial 18F-FDG PET/CT and (K) axial non contrast CT demonstrate FDG-avid soft tissue within the left
supraclavicular fossa in keeping with the patient’s known diagnosis of Hodgkin’s lymphoma (arrows). Increased physi-
ological FDG uptake within the adjacent brown fat (asterisks) makes this area of abnormality difficult to visualise.
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Thermogenesis occurs due to a specific mitochondrial
uncoupling protein (UCP-1). Uncoupling of oxidative phos-
phorylation within mitochondria generates heat.50,51

FDG uptake in BAT has been reported with an incidence
of 2.5%-4%.49,52,53 Hypermetabolic BAT is more common in
women, in children and young patients and in those with a
low body mass index. It also increases in cold
weather.49,54,55 Since BAT is innervated by the sympathetic
nervous system, glucose accumulation within brown fat is
increased by sympathetic stimulation.56 Following rapid



Figure 4 Patient 17: (A-D): (A) Axial 18F-FDG PET demonstrates normal physiological uptake within the brain. The avid
physiological uptake may obscure an underlying intracranial mass lesion. (B) Axial 18F-FDG PET and (C) Axial 18F-FDG
PET/CT with appropriate windowing. It is possible to visualize an FDG-avid lesion within the right side of the midbrain
(arrows). (D) Postcontrast T1-weighted MRI confirmed an enhancing lesion within the right crus cerebri. This patient also
had a second lesion within the posterior fossa (not shown here). Biopsy confirmed intracranial non-Hodgkin’s lymphoma.
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weight loss, cancer patients have a lower body mass index
(BMI) and are more prone to cold stress. The stimulation of
the sympathetic nervous system in these patients induces
thermogenesis. Increased BAT glucose metabolism can be
reduced by adequate patient warming prior to FDG injection.
In addition, drug administration with beta blockers (includ-
ing propranolol), diazepam and fentanyl have been reported
to reduce BAT uptake.54,57,58

Increased metabolic activity in BAT is visualized as sym-
metric, bilateral increased FDG uptake within the supracla-
vicular fossae, within the neck, the thorax, axillae and the
paraspinal and retroperitoneal fat49 (Fig. 3). Due to brown
fat activation, nodal involvement may be difficult to appreci-
ate on PET imaging in patients with primary tumors of the
head and neck or lymphoma. The corresponding CT images
can aid differentiation between physiological and pathologi-
cal FDG uptake where increased BAT activity and nodal
pathology are both present (Fig. 3).
Pitfall �Windowing Error
Normal physiological uptake within the grey matter of the
brain is quite marked and can obscure intracranial pathology
including space occupying lesions. Metastases are the most
common intracranial mass lesions but the differential
includes primary gliomas or lymphoma. These lesions can
present as focal areas of increased or decreased intracranial
FDG uptake. Adequate windowing when interpreting images
of the brain or other areas of high physiological FDG uptake
is required to prevent a false negative result59 (Fig. 4).
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Oral Cavity, Pharynx and Larynx
SCC commonly arises from the oral cavity, pharynx or larynx
and constitutes 90% of cases of head and neck cancer.60 SCC
of the oral cavity or pharynx has an overall 5-year survival of
63% but life expectancy is significantly shortened in the pres-
ence of positive lymph node involvement.61 HNSCC is
staged by the 2018 AJCC/UICC tumor classification system
and it is important that the reporting physician has these cri-
teria to hand when reporting head and neck cancer PET stud-
ies.62,63 This enhances the imaging report and ensures critical
information is included to allow accurate T, N and M staging.
Imaging Pitfalls and How to Avoid Them
Pitfall - Local Tumor Staging
18F-FDG PET/CT is highly sensitive in the detection of pri-
mary head and neck cancers but is limited by its poor spatial
resolution when it comes to accurately staging local inva-
sion.64-66 Initial imaging of the primary site should be per-
formed with contrast enhanced CT and/or MRI, with certain
tumor locations better served by one or other of these modal-
ities. For example, MR is preferred for nasopharyngeal SCC
because of its ability to detect skull base involvement and for
oral cavity tumors due to its ability to detect extrinsic tongue
muscle invasion67 (Fig. 5).
Pitfall - Bone marrow infiltration
Assessing the presence and extent of bony mandibular
involvement is essential for surgical planning. Metabolic
activity within the mandible tends to overestimate the extent
of tumor due to a combination of partial volume effect and
misregistration artifact. The CT component of PET/CT has a
greater sensitivity and specificity for mandibular involvement
than PET alone.68 It can be used to detect cortical bone ero-
sion that may not be visible on MR. MR on the other hand is
useful in the detection of bone marrow infiltration. Combin-
ing information from CT, PET and MR results in the greatest
accuracy when assessing for the presence or extent of man-
dibular involvement69 (Fig. 5).
Pitfall - Perineural Spread
Some head and neck tumors are able to use local cranial
nerve branches as a conduit for tumor growth. This perineu-
ral spread is most classically associated with adenoid cystic
carcinoma but as this tumor is relatively rare among head
and neck malignancies, SCC is the most commonly impli-
cated tumor. Perineural spread infers a poor prognosis even
when asymptomatic. It is often not recognized at the time of
surgery and can occur in the absence of local lymphadenopa-
thy or distant metastatic disease. While MRI is the modality
of choice when it comes to assessing perineural spread it can
also be visualized on 18F-FDG PET/CT as asymmetric linear
or curvilinear hypermetabolic activity.70 If suspected on18F-
FDG PET/CT, retrospective evaluation of the prior contrast
enhanced MR should be performed to improve accuracy71

(Fig. 6).
Pitfall � Vocal Cord Palsy
Injury to the recurrent laryngeal or vagus nerve (proximal to
the branch point of the recurrent laryngeal nerve) along their
course from the brainstem to the aortic arch on the left side
and subclavian artery on the right side, can result in a vocal
cord palsy (VCP). Up to 40% of unilateral cases are asymp-
tomatic and the PET/CT reader may be the first to report the
finding.72,73 Iatrogenic injury is the most common cause,
accounting for 37% of cases.74 Another common cause is
malignancy remote from the larynx accounting for 14% of
cases.75 For this reason, 18F-FDG PET/CT imaging must be
reviewed thoroughly from the skull base to the right subcla-
vian artery and aortic arch to assess for a mass lesion along
the course of the ipsilateral vagus or recurrent laryngeal
nerves. 20% of cases are idiopathic and 6% due to trauma at
intubation.75

The most specific imaging characteristics of a vocal cord
palsy are; enlargement of the ipsilateral laryngeal ventricle,
medialisation and thickening of the ipsilateral aryepiglottic
fold and widening of the ipsilateral piriform sinus. In combi-
nation, these findings are reliable for the detection of VCP,
with at least 2 of the 3 findings present in all 31 patients in
one small study.76 Another helpful finding is the vocal cord
“sail sign” (Fig. 6). This appearance is due to a combination
of medialisation of the posterior vocal cord secondary to
anteromedial displacement of the ipsilateral arytenoid carti-
lage and distension of the ipsilateral laryngeal ventricle due
to muscular atrophy.77,78

Unilateral VCP can result in compensatory increased
uptake within the contralateral vocal cord on 18F-FDG PET/
CT, potentially mimicking a vocal cord mass lesion. The cor-
responding CT imaging should be reviewed to assess for
irregularity of the contralateral vocal cord or soft tissue
within the immediately adjacent paraglottic fat.35 Layngo-
scopy can confirm vocal cord paralysis and assess for a con-
tralateral vocal cord mass.
Thyroid Gland
Physiological and Benign Variations in FDG
Uptake
The thyroid gland usually demonstrates homogeneous low
FDG uptake, but may have a variable appearance.40,79-82 On
18F-FDG PET/CT, incidental uptake within the thyroid gland
can appear as diffuse, focal or a combination - diffuse and
focal. According to several studies, 1.2%�4.3% of patients
have incidental thyroid abnormalities detected at 18F-FDG
PET/CT,80,83-88 while some authors report an even higher
prevalence of thyroid incidentalomas of 8.4%.79

Symmetric and diffuse thyroid uptake is usually benign in
nature. It has a number of potential etiologies including dif-
fuse or multinodular goiter, autoimmune Hashimoto thy-
roiditis or Graves’ disease80,89-98 (Fig. 7). There are several
reports of diffusely increased thyroid uptake in
hypothyroid patients, with or without thyroid hormone
replacement.80,93,96 Asymmetric FDG uptake in the thyroid



Figure 5 Patient 18: (A-D): (A) Axial 18F-FDG PET/CT and (B) axial 18F-FDG PET demonstrate an FDG-avid mass
arising from the nasopharynx and extending into the adjacent masticator space in keeping with locally invasive naso-
pharyngeal carcinoma (asterisks). It is not possible to accurately assess the surrounding structures on 18F-FDG PET/
CT in order to provide an accurate T-stage. (C) T1 weighted MR and (D) postcontrast MR demonstrate that the mass
(asterisk) invades the skull base (white arrow) and surrounds the right internal carotid artery (blue arrows) in keeping
with a T4 tumor. Patient 19: (E and F): (E) Axial T2 weighted MR demonstrates a mass arising from the musculature
of the tongue (asterisk). The boundaries of the mass are delineated by white arrows. The normal right hyoglossus mus-
cle is delineated by a blue dotted line on the contralateral side. The left hyoglossus muscle is delineated by an inter-
rupted blue-dotted line as it is invaded by the mass in keeping with T4 staging. This mass was markedly avid on 18F-
FDG PET/CT (F) but it was not possible to discern the boundaries of local invasion (asterisk). This could potentially
lead to an incorrect T-stage being applied. Patient 20: (G-J): (G) Axial 18F-FDG PET/CT and (H) axial 18F-FDG PET
in a patient with recurrent SCC (asterisk). There is a subtle focus of increased uptake over the condyle of the left man-
dible which could represent a further focus of recurrent disease or treatment effect (white arrow). There was no associ-
ated cortical erosion on the accompanying CT imaging. (I) T1-weighted MR demonstrates corresponding low T1
signal within the condyle of the left mandible consistent with recurrent disease (white arrow). In contradistinction to
this, radiation change is associated with increased T1 signal due to fat deposition within the bone marrow. Note the
normal signal within the condyle of the right mandible (blue arrow). (J) Axial CT image 6 months later demonstrates
cortical erosion of the condyle of the left mandible (white arrow). This was not present on earlier CT imaging.
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Figure 6 Patient 21: (A and B): (A) Axial 18F-FDG PET/CT demonstrates subtle increased FDG uptake in the left mas-
ticator space (white arrow) in a patient with previously treated SCC. A corresponding focus of linear STIR high signal
(white arrow) on MRI (B) is in keeping with perineural spread. Patient 22: (C) Axial contrast enhanced CT demon-
strates a left-sided sail sign (asterisk) in keeping with a left-sided vocal cord palsy. This patient also has a mass on the
right vocal cord (white arrow).
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gland is non-specific. It may be a result of a benign thyroid
nodules.99
Pitfall � The FDG-Avid Thyroid Nodule
Focal FDG uptake in thyroid gland may also represent malig-
nancy. According to several studies, the risk of malignancy in
thyroid incidentalomas ranges from 23.2% to 50%.79,80,85-87

The risk of cancer has been reported to be as high as 6.4% in
patients with diffuse or bilateral thyroid uptake but increases
further to 30.9% in focal and unilateral thyroid uptake.79

The rate of malignancy associated with focal thyroid uptake
on the 18F-FDG PET/CT differs among studies with a wide
range reported of between 14 % and 100%.79,80,83,84,86-
88,100-110 Focal uptake on 18F-FDG PET/CT may also be
falsely interpreted as metastatic lymphadenopathy, particu-
larly at the lower cervical level. This can be further assessed
on the corresponding CT images.
Table 1 TI-RADS Scoring System, Risk of Malignancy and Managemen

TI-RADS
Category Score

Risk of Malignancy Based
on Sonographic Features
Only (%)

Rec
on
On

TR1 0 Benign (<2%) No
TR2 2 Not suspicious (<2%) No
TR3 3 Mildly Suspicious (2.1-5%) FNA

US
5 y

TR4 4-6 Moderately suspicious (5.1-
20%)

FNA
US
5 y

TR5 >6 Highly suspicious (20%) FNA
US
5 y

ACR TI-RADS scoring system, associated nodule risk and recommendation b
change in risk profile for each TI-RADS category if the nodule is FDG-avid

*Low numbers studied in both TR1 (n = 1) and TR2 (n = 6) nodules. Results s
In patients with focal thyroid uptake, ultrasonography is
usually performed and thyroid nodules are classified accord-
ing to the ACR TI-RADS criteria for thyroid malignancy.111

However, the TI-RADS scoring system does not take into
account features identified on 18F-FDG PET/CT. This is
important as FDG avidity within a thyroid nodule increases
the risk of malignancy and fine needle aspiration may be
required for nodules classified as low risk by ACR TI-
RADS112 (Table 1). FDG avidity may in future supplement
the ACR TI-RADS criteria by adding points to a nodule with
hypermetabolic activity (Fig. 7).
Pitfall �Metastatic Thyroid Carcinoma
18F-FDG PET/CT is a useful tool to detect metastases in dif-
ferentiated thyroid cancer (DTC).113 As DTC cells dedifferen-
tiate, their FDG uptake tends to increase and their
radioiodine uptake decreases � this is known as the flip-flop
t Recommendations

ommendation Based
Sonographic Features
ly

Risk of Malignancy If Also
Focally FDG Avid on 18F-
FDG PET/CT

FNA 0%*
FNA 16.7%*
if >2.5 cm

follow-up at 1, 3 and
ears if >1.5 cm

13.2%

if >1.5 cm
follow-up at 1, 2, 3 and
ears if >1 cm

23.7%

if >1 cm
follow-up annually for
ears if >0.5 cm

68.1%

ased on sonographic features alone. The last column demonstrates the
on 18F-FDG PET/CT.112

hould be interpreted with caution; US, ultrasound.
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pattern.114-116 18F-FDG PET/CT is therefore most useful in
the absence of radioiodine uptake with a sensitivity of 94%
for metastatic disease in this setting117 (Fig. 7). Metastatic
medullary thyroid carcinoma (MTC) demonstrates poor
FDG uptake. It is therefore difficult to detect at 18F-FDG
PET/CT, particularly when the serum calcitonin is less than
1000pg/ml when the pooled detection rate drops from 75%
to 20-36.8%118-121 (Fig. 7).
Salivary Glands
Physiologic or Benign Variations in FDG
Uptake
Salivary glands physiologically accumulate FDG and elimi-
nate the tracer via saliva122 (Figure 8). In most cases, they
demonstrate bilateral mild FDG uptake, but they may also
demonstrate no uptake. The usual pattern of physiological
uptake in salivary glands is diffuse and symmetric and detec-
tion of focal and heterogeneous FDG uptake can indicate
malignancy. In contrast, symmetric uptake has been also
reported in malignancy particularly in extranodal Non-
Hodgkin’s lymphoma and SCC.29-33

As increased salivary gland FDG uptake can be detected in
both benign and malignant conditions, interpretation of 18F-
FDG PET/CT scans can be challenging. Benign conditions of
the salivary glands associated with increased FDG uptake
include benign tumors (Warthin’s tumors, pleomorphic ade-
nomata and infectious or inflammatory diseases such as
tuberculous infection, obstructive sialoadenitis, calculosis,
sarcoidosis or post-irradiation sialoadenitis123-125 (Fig. 8).
Asymmetric FDG uptake can be detected in a remaining

submandibular gland secondary to contralateral salivary gland
resection, or in patients following unilateral gland external
radiation treatment29,33 (Fig. 8). This can be misinterpreted as
metastatic nodal involvement at levels IB/II.41,126,127
Pitfall � The Malignant Salivary Gland Tumor
Malignant tumors of the salivary glands are rare accounting
for only 3% of all head and neck neoplasms. In most cases,
they originate from the parotid gland although around 75%
of parotid gland tumors are benign in nature.128 Malignant
etiologies of increased metabolic activity in the salivary
glands include metastatic tumours or primary parotid non-
Hodgkin’s lymphoma.129 High-grade malignant tumours of
the salivary glands usually present with high FDG uptake, in
contrast to low-grade tumours, which show relatively low
FDG uptake. As increased FDG activity within the salivary
glands can mimic or hide tumours, differentiation between
normal physiologic FDG uptake and pathological activity
can be difficult.82,130-132 Further diagnostics with ultrasound
guided biopsy or MRI may also be required for a definitive
diagnosis.29,33,133 A study by Kendi et al concluded that
PET/CT parameters cannot adequately differentiate benign,
malignant or metastatic parotid tumours134 (Fig. 8).
Lymphoid Structures and Nodal
Staging of HNSCC
The risk factors classically associated with HNSCC are
tobacco and alcohol. However, more recently, another sub-
group of patients with a different risk factor profile has
emerged � patients with HPV associated SCC of the oro-
pharynx.135 HPV positive oropharyngeal SCC is associated
with a younger age at presentation, male gender and higher
socioeconomic status and education.136-139 It has increased
in incidence by 2.7% in men and 0.8% in women each year
from 1999 to 2015 and is now associated with 34% of cases
of oropharyngeal SCC in Caucasians.140,141 It has a signifi-
cantly better prognosis than HPV negative oropharyngeal
SCC despite a predisposition for early and extensive nodal
metastases.142,143

The most recent AJCC/UICC guidelines have separated
oropharyngeal cancers into these two separate groups, those
that are associated with HPV infection (p16 positive) and
those that are not (p16 negative) with separate nodal staging
algorithms for each. This has the potential to cause confusion
as the HPV status of the tumor may not be known at the
time of image interpretation.144

Difficulty detecting a primary lesion on 18F-FDG PET/CT
can occur when the tumor is small or if it arises within a
structure with high metabolic activity such as the lingual or
palatine tonsils.145,146 Careful evaluation of the CT images
for signs of malignancy is necessary.33,40,147 MR can be
used as an adjunct when the primary lesion is not
identified.144
Pitfall � Non-FDG�Avid Lymph Nodes and
HPV Status
HPV associated oropharyngeal SCC is strongly associated
with cystic lymphadenopathy.148 These cystic lymph nodes
infer a favorable prognosis over solid lymphadenopathy in
this setting, however they may contain insufficient metabol-
ically active tissue to demonstrate visible FDG uptake lead-
ing to false negative appearance at 18F-FDG PET/CT
(Fig. 9).42,149 This can occur even in the setting of a meta-
bolically active primary lesion. In this setting careful review
of the CT component is necessary to identify abnormal but
non avid nodes.

One of the hallmarks of a metastatic lymph node is an
increase in short axis diameter resulting in a rounded appear-
ance. However there is significant overlap in size between
normal lymph nodes and those with malignant infiltration. A
short axis diameter of greater than 10 mm is the most effec-
tive size criterion for malignant infiltration although a slightly
larger cut-off of 11 mm is taken in level II. Groups of nodes
are also considered suspicious, even if their short axis diame-
ters are within these confines. Three or more lymph nodes
together with short axis diameters of 8 mm or more (9 mm
in level II) are considered suspicious. Loss of the central fatty
hilum can also suggest malignant infiltration but this is best
demonstrated on ultrasound.150,151



Figure 7 Patient 23: (A-C): (A) 18F-FDG PET MIP image, (B) axial 18F-FDG PET/CT and (C) axial CT in this patient
with Hashimoto’s thyroiditis. There is diffuse FDG uptake within the thyroid gland (arrows). Patient 24: (D and E):
(D) Axial 18F-FDG PET/CT demonstrates increased FDG uptake within the periphery of a left-sided thyroid nodule
(white arrow). The corresponding CT image (E) demonstrates that the nodule is cystic (black arrow). This was proven
to be benign. Patient 25: (F and G): (F) Axial 18F-FDG PET/CT and (G) axial CT in this patient with lymphoma of
the thyroid gland. There is marked FDG uptake and enlargement of the left thyroid lobe (arrows). Patient 26: (H and
I): (H) 18F-FDG PET MIP image demonstrating FDG-avid metastases within the neck, thorax and abdomen in this
patient with metastatic papillary thyroid carcinoma (arrows). (I) Axial 18F-FDG PET/CT demonstrates the primary
lesion within the right lobe of the thyroid gland (white arrow). Patient 27: (J) Soft tissue nodule located at the sternal
notch demonstrates faint FDG uptake consistent with metastatic medullary thyroid carcinoma (white arrow).
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Figure 8 Patient 28: (A) Axial 18F-FDG PET/CT demonstrates physiological low-grade uptake within the parotid
glands (asterisks). Patient 29: (B and C): (B) Axial 18F-FDG PET/CT and (C) axial CT in this patient with Sjogrens
disease demonstrate intense FDG uptake within both parotid glands (asterisks), more marked on the right. There is
partial fatty atrophy of the left parotid gland (white arrow) secondary to chronic inflammation. FDG uptake within the
atrophied region is much less marked. Patient 30: (D and E): (D) Axial 18F-FDG PET/CT demonstrates physiological
uptake within the left submandibular gland (asterisk) and Axial CT (E) demonstrates absence of the right submandibu-
lar gland consistent with prior surgery. Patient 31: (F and G): (F) Axial 18F-FDG PET in this patient with recurrent
HNSCC demonstrates physiological uptake within the sublingual glands (arrows). (G) STIR weighted MR in the same
patient demonstrates the normal appearance of the sublingual glands on MR (arrows). Patient 32: (H and I): (H) Axial
18F-FDG PET/CT in this patient with a Warthin’s tumor demonstrates increased FDG uptake and (I) STIR high signal
within the superficial lobe of the left parotid gland (asterisks).
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Table 2 A Summary Table of Each Variant or Pitfall With the Expected Imaging Appearances and a Suggested Solution or
Management Plan to Optimize Patient Outcomes

Variant or pitfall Finding Solution

Attenuation correction artifact
1. Dental prosthetics, metallic implants
and ports

Streak artifact on CT image with falsely
increased or decreased FDG uptake
on PET images

Review the nonattenuation corrected PET
images

2. Intravenous contrast medium Dense contrast material in the vascular
structures may result in attenuation
overcorrection resulting in an artifac-
tual increase in FDG uptake

Non contrast CT for attenuation correction
is usually preferred for this reason

3. Calcified lymph nodes Increased FDG uptake due to markedly
increased lymph node density. This
can mimic FDG-avid
lymphadenopathy

Review the nonattenuation corrected PET
and non contrast CT images

Physiological variants
1. Muscular uptake (muscular activity dur-
ing talking, chewing, prior exercise or
prior insulin administration)

Increased FDG uptake may mimic a
malignant tumor or nodal pathology

Review the CT images. The interpreter
must be aware of normal patterns of
FDG uptake

2. Waldeyer’s ring Increased FDG uptake may be due to
infection, inflammation or granuloma-
tous processes as well as due to
malignant disease

Normal tonsils demonstrate symmetric
FDG uptake with small differences in
metabolic activity accepted. An SUVmax
ratio of 1.6 is a useful cutoff for suggest-
ing the possibility of malignancy but
there is significant overlap with benign
pathology

3. Brown fat tissue Increased symmetric FDG uptake in
the supraclavicular fossae, within the
neck, thorax, axillae, and the paraspi-
nal and retroperitoneal fat

Review corresponding CT images for cor-
responding fat attenuation. Correspond-
ing soft tissue attenuation must be
excluded as this is more in keeping with
an FDG-avid mass

4. Windowing error The brain demonstrates high physio-
logical FDG uptake, particularly the
cortex. This can obscure an underly-
ing brain tumor or metastasis

Adequate windowing is essential to pre-
vent a false negative result

Masses that demonstrate avid radio-
tracer uptake for example, paragan-
gliomas can appear larger than they
actually are on PET/CT imaging

Adequate windowing allows for a more
accurate measurement of the mass. The
mass can also be measured on the non
contrast CT.

Tumor detection, staging and follow-up
1. Bone marrow involvement Increased FDG uptake adjacent to or

overlying bone
Combine CT, PET and MR imaging for the
most accurate assessment. CT can dem-
onstrate cortical erosion and MRI can
demonstrate low bone marrow T1 signal
in the setting of bone infiltration

2. Perineural spread Asymmetric linear or curvilinear
increase in FDG activity

Review the contrast enhanced and STIR
MR images

3. Vocal cord palsy (VCP) The sail sign on CT (Fig. 6) suggests a
VCP. 18F-FDG PET/CT often demon-
strates compensatory increased FDG
uptake within the contralateral vocal
cord.

Review the corresponding CT images to
exclude an underlying vocal cord mass.
Laryngoscopy is required to confirm
vocal cord paralysis. If VCP is con-
firmed, imaging along the course of the
ipsilateral vagus and recurrent laryngeal
nerves must be performed (from skull-
base to aortic arch or right subclavian
artery) to exclude an underlying mass.

4. Timing of post-treatment 18F-FDG PET/
CT imaging

Increased FDG uptake in recently irra-
diated tissues or following recent sur-
gery may lead to a false positive

18F-FDG PET/CT should be performed 12
weeks after radiotherapy or approxi-
mately 4-6 weeks following surgery
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Table 2 (Continued )

Variant or pitfall Finding Solution

5. HPV associated SCC Often associated with cystic lymphade-
nopathy which may not demonstrate
increased FDG uptake

The accompanying CT imaging should be
assessed for abnormal lymph nodes
based on their size and appearance.
Other modalities including US or MR
imaging can also be assessed.

Thyroid gland
FDG-avid thyroid nodules FDG-avid thyroid nodules have a

higher associated risk of malignant
pathology for each given ACR TI-
RADS TR category (Table 1)

Physicians must be aware of this
increased risk. The management plan
should be altered appropriately with a
decreased threshold for FNA.

Metastatic differentiated thyroid cancer
(DTC)

As DTC cells dedifferentiate, the FDG
uptake increases and the radioiodine
uptake decreases � the “flip-flop
pattern”

18F-FDG PET/CT is most useful in the
absence of radioiodine uptake

Medullary thyroid cancer Medullary thyroid cancer (MTC) can
demonstrate poor FDG uptake

It may be very difficult to detect MTC
metastases on 18F-FDG PET/CT and
other modalities including contrast
enhanced CT may be required. Close
comparison with prior imaging is
essential

Salivary gland
Benign vs malignant salivary gland lesions Increased metabolic activity in the sali-

vary glands can be detected in both
benign and malignant conditions

Further diagnostics with US or MRI is
required

Paragangliomas of the head and neck
Appropriate follow-up Up to 40% of paragangliomas of the

head and neck are hereditary. Succi-
nate dehydrogenase mutations are
the most common

Genetic testing is recommended in all
patients depending on local resources
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Pitfall - Indeterminate Lymph Nodes
18F-FDG PET/CT is more accurate (93%) than CT/MRI (86%)
for nodal staging with reported sensitivities ranging from
86%-98% and specificities ranging from 88%-98.5%.152-154

This increased sensitivity is due to the fact that 18F-FDG PET/
CT can detect hypermetabolic lymph nodes that are not
enlarged and that are morphologically normal on CT and MR
imaging. The SUVmax of malignant nodes can overlap with
SUVmax values for reactive lymphadenopathy although values
do tend to be significantly higher in the untreated patient.155

Small lymph nodes may also be below the resolution of PET
(4-6 mm) and therefore microscopic nodal disease may not be
detected at 18F-FDG PET/CT.156 Ultrasound can be used to
evaluate nodes that are indeterminate on PET/CT and guide
biopsy if there is an abnormal US appearance.157
Metastatic Disease
Distant metastatic disease is relatively uncommon in HNSCC
with an incidence ranging from 2% to 18%.158 An additional
20%-30% develop metastases over the course of their disease. It
most commonly affects the lungs followed by liver and bone.
Metastatic disease implies a poor prognosis with a median sur-
vival of 10 months.159 If metastatic disease is identified,
unnecessary radical treatments can be avoided.160 18F-FDG
PET/CT has a negative predictive value of up to 99% for the
evaluation of distant metastases at the time of diagnosis.161
Therapy Response
18F-FDG PET/CT is a useful modality for assessing disease
response and is recommended by the NCCN guidelines for
therapy assessment following chemo-radiotherapy or radio-
therapy alone.16 It evaluates the cellular viability of the tumor
and can therefore overcome the limitations of CT and MR
which may demonstrate only nonspecific soft tissue changes
associated with prior surgery or radiotherapy including
edema, scarring and loss of fascial planes.28 Novel chemother-
apeutic agents can also be cytostatic as opposed to cytoreduc-
tive, with treatment response manifested by a reduction in
tumor metabolism as opposed to a reduction in tumor size.
Benign Variations in FDG Uptake Post
Treatment
There are four separate qualitative criteria for assessing treat-
ment response; Deauville, Hopkins, Porceddu and NI-RADS,
each of which have similar performance characteristics but



Figure 9 Patient 33: (A) Axial 18F-FDG PET/CT demonstrates FDG uptake in a nodal metastasis in right level II in this
patient with HNSCC (arrow). Patient 34: (B) Axial 18F-FDG PET/CT demonstrates intense FDG uptake within the
oral cavity and oropharynx (>2 £ liver uptake) (arrow) in this patient with previously resected oropharyngeal SCC in
keeping with disease recurrence (Deauville 5). Patient 35: (C-E): (C) Axial 18F-FDG PET/CT in this patient with HPV
associated oropharyngeal SCC demonstrates an enlarged left level II lymph node without corresponding FDG uptake
(white arrow). There is also increased FDG uptake within the left lingual tonsil consistent with the primary lesion
(black arrow). (D) Axial STIR weighted MRI and (E) axial postcontrast MRI demonstrate a peripherally enhancing cys-
tic lymph node in the left level II (white arrows) consistent with a nodal metastasis. Its cystic nature accounts for the
lack of increased FDG uptake. The left lingual tonsil has a normal appearance on STIR weighted MR (blue arrow).
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the Deauville and Porceddu scales minimize the number of
indeterminate cases while maintaining a high negative pre-
dictive value.162

The Deauville criteria are commonly used to predict
regional control and remission of tumor after radiotherapy
and allow for patients to be divided into two groups; res-
ponders and nonresponders.163 This scale recognizes that
FDG uptake on the post treatment study can represent
benign disease and prevents misinterpretation of such find-
ings as disease recurrence.164
Pitfall � Timing of Post Treatment 18F-FDG
PET/CT
The timing of post treatment 18F-FDG PET/CT significantly
influences its accuracy with guidelines suggesting a mini-
mum delay of 12 weeks post radiotherapy or approximately
4-6 weeks postsurgery.60 FDG uptake is increased in recently
irradiated tissues and is more intense in tissues that received
a higher radiation dose. The increased uptake can last for 12-
16 months post radiotherapy.165 Overlap in the SUVmax val-
ues demonstrated in radiation related inflammatory change
and that of recurrent disease can lead to diagnostic uncer-
tainty, particularly early on (less than 2 months post
therapy).166,167
Tumor Recurrence
All patients with HNSCC are at risk of tumor recurrence or
development of a second primary tumor. Recurrence tends
to occur within the first three years following treatment.
Delayed recurrence is more common in those with HPV posi-
tive HNSCC.168



Figure 10 Patient 36: (A-D): (A) Axial T2-weighted MRI demonstrates a T2 high signal mass within the left side of the
neck (white arrow). This mass splays the left internal carotid artery (blue arrow) and the left internal jugular vein (yel-
low arrow) in keeping with a carotid space mass, the differential for which includes a paraganglioma or vagal schwan-
noma. (B) Coronal MR angiography demonstrates that the left carotid space mass is hypervascular. (C) 68Ga-DOTA
PET/CT demonstrates a corresponding focus of increased radiotracer uptake consistent with a paraganglioma. (D)
68Ga-DOTA PET/CT in the same patient with inadequate windowing. The lesion (black arrow) appears larger than it
actually is due to intense radiotracer uptake.
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The risk of recurrence is increased with higher stage
tumours at diagnosis, positive surgical margins, perineural
invasion and extracapsular lymph node spread. 18F-FDG
PET/CT is superior to CT, MRI and clinical examination for
the detection of recurrent disease.28,169 Its reported sensitiv-
ity in this setting ranges between 90% and 100% and speci-
ficity between 63% and 94%. The lower specificity is due to
inflammatory uptake and tissue biopsy or a short interval fol-
low-up study is advised to clarify. If initial biopsy findings
are negative, a repeat biopsy or close follow-up are required
due to the possibility of sampling errors28 (Fig. 9).
68Ga-DOTA PET/CT in Head and
Neck Cancer
Evaluation of head and neck paragangliomas is a common
indication for 68Ga-DOTA PET/CT. The neck is the most
common primary site for this tumour.170 Paragangliomas
typically present in characteristic locations, with the carotid
body being the most common site accounting for over 50%
(Fig. 10). They also occur at the jugular foramen, middle ear
and along the course of the vagus nerve.171 They are usually
nonfunctioning and benign, demonstrating only local
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invasion.172,173 There are no histopathological criteria to
accurately define a malignant paraganglioma and therefore
malignancy is defined by the presence of metastases.174 Less
than 5% of paragangliomas of the head and neck metastasize
and this number is even lower for carotid body lesions.170

68Ga-DOTAPET/CT is the most sensitive tool for the
detection of head and neck paragangliomas as they may be
very small and difficult to detect.175

Approximately 40% of paragangliomas are thought to be
hereditary.176 These familial cases tend to present earlier
with a peak of between 30 and 35 years and tend to be multi-
centric.177 Succinate dehydrogenase is the most commonly
implicated genetic mutation and genetic testing is recom-
mended in all patients depending on local resources.178
Conclusion
Incidental findings and technical artifacts are common on
18F-FDG PET/CT and 68Ga-DOTA PET/CT imaging. Com-
prehensive knowledge of variant physiological biodistribu-
tion and potential pitfalls of image interpretation are vital to
maximize diagnostic accuracy (Table 2). Patient outcomes
can also be improved with appropriate complementary use
of structural imaging with either CT, MR or ultrasound in a
number of head and neck pathologies.
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